Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A LEA gene regulates Cadmium tolerance by mediating physiological responses.

Identifieur interne : 002C27 ( Main/Exploration ); précédent : 002C26; suivant : 002C28

A LEA gene regulates Cadmium tolerance by mediating physiological responses.

Auteurs : Caiqiu Gao [République populaire de Chine] ; Chao Wang ; Lei Zheng ; Liuqiang Wang ; Yucheng Wang

Source :

RBID : pubmed:22754308

Descripteurs français

English descriptors

Abstract

In this study, the function of a LEA gene (TaLEA1) from Tamrix androssowii in response to heavy metal stress was characterized. Time-course expression analyses showed that NaCl, ZnCl(2), CuSO(4), and CdCl(2) considerably increased the expression levels of the TaLEA1 gene, thereby suggesting that this gene plays a role in the responses to these test stressors. To analyze the heavy metal stress-tolerance mechanism regulated by TaLEA1, TaLEA1-overexpressing transgenic poplar plants (Populus davidiana Dode × P. bollena Lauche) were generated. Significant differences were not observed between the proline content of the transgenic and wild-type (WT) plants before and after CdCl(2) stress. However, in comparison with the WT plants, the TaLEA1-transformed poplar plants had significantly higher superoxide dismutase (SOD) and peroxidase (POD) activities, and lower malondialdehyde (MDA) levels under CdCl(2) stress. Further, the transgenic plants showed better growth than the WT plants did, indicating that TaLEA1 provides tolerance to cadmium stress. These results suggest that TaLEA1 confers tolerance to cadmium stress by enhancing reactive oxygen species (ROS)-scavenging ability and decreasing lipid peroxidation. Subcellular-localization analysis showed that the TaLEA1 protein was distributed in the cytoplasm and nucleus.

DOI: 10.3390/ijms13055468
PubMed: 22754308
PubMed Central: PMC3382805


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A LEA gene regulates Cadmium tolerance by mediating physiological responses.</title>
<author>
<name sortKey="Gao, Caiqiu" sort="Gao, Caiqiu" uniqKey="Gao C" first="Caiqiu" last="Gao">Caiqiu Gao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; E-Mails: chwcaogcq@yahoo.com.cn (C.G.); wzyrgm@163.com (C.W.); zhenglei123@126.com (L.Z.); liuqiangwang2009@yahoo.com (L.W.).</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040</wicri:regionArea>
<wicri:noRegion>Harbin 150040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Chao" sort="Wang, Chao" uniqKey="Wang C" first="Chao" last="Wang">Chao Wang</name>
</author>
<author>
<name sortKey="Zheng, Lei" sort="Zheng, Lei" uniqKey="Zheng L" first="Lei" last="Zheng">Lei Zheng</name>
</author>
<author>
<name sortKey="Wang, Liuqiang" sort="Wang, Liuqiang" uniqKey="Wang L" first="Liuqiang" last="Wang">Liuqiang Wang</name>
</author>
<author>
<name sortKey="Wang, Yucheng" sort="Wang, Yucheng" uniqKey="Wang Y" first="Yucheng" last="Wang">Yucheng Wang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22754308</idno>
<idno type="pmid">22754308</idno>
<idno type="doi">10.3390/ijms13055468</idno>
<idno type="pmc">PMC3382805</idno>
<idno type="wicri:Area/Main/Corpus">002976</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002976</idno>
<idno type="wicri:Area/Main/Curation">002976</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002976</idno>
<idno type="wicri:Area/Main/Exploration">002976</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A LEA gene regulates Cadmium tolerance by mediating physiological responses.</title>
<author>
<name sortKey="Gao, Caiqiu" sort="Gao, Caiqiu" uniqKey="Gao C" first="Caiqiu" last="Gao">Caiqiu Gao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; E-Mails: chwcaogcq@yahoo.com.cn (C.G.); wzyrgm@163.com (C.W.); zhenglei123@126.com (L.Z.); liuqiangwang2009@yahoo.com (L.W.).</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040</wicri:regionArea>
<wicri:noRegion>Harbin 150040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Chao" sort="Wang, Chao" uniqKey="Wang C" first="Chao" last="Wang">Chao Wang</name>
</author>
<author>
<name sortKey="Zheng, Lei" sort="Zheng, Lei" uniqKey="Zheng L" first="Lei" last="Zheng">Lei Zheng</name>
</author>
<author>
<name sortKey="Wang, Liuqiang" sort="Wang, Liuqiang" uniqKey="Wang L" first="Liuqiang" last="Wang">Liuqiang Wang</name>
</author>
<author>
<name sortKey="Wang, Yucheng" sort="Wang, Yucheng" uniqKey="Wang Y" first="Yucheng" last="Wang">Yucheng Wang</name>
</author>
</analytic>
<series>
<title level="j">International journal of molecular sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (MeSH)</term>
<term>Cadmium (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Lipid Peroxidation (MeSH)</term>
<term>Malondialdehyde (metabolism)</term>
<term>Peroxidase (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (physiology)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Superoxide Dismutase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (MeSH)</term>
<term>Cadmium (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Malonaldéhyde (métabolisme)</term>
<term>Myeloperoxidase (métabolisme)</term>
<term>Peroxydation lipidique (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Superoxide dismutase (métabolisme)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cadmium</term>
<term>Malondialdehyde</term>
<term>Peroxidase</term>
<term>Plant Proteins</term>
<term>Reactive Oxygen Species</term>
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Protéines végétales</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cadmium</term>
<term>Espèces réactives de l'oxygène</term>
<term>Malonaldéhyde</term>
<term>Myeloperoxidase</term>
<term>Protéines végétales</term>
<term>Superoxide dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Lipid Peroxidation</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Gènes de plante</term>
<term>Peroxydation lipidique</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stress physiologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this study, the function of a LEA gene (TaLEA1) from Tamrix androssowii in response to heavy metal stress was characterized. Time-course expression analyses showed that NaCl, ZnCl(2), CuSO(4), and CdCl(2) considerably increased the expression levels of the TaLEA1 gene, thereby suggesting that this gene plays a role in the responses to these test stressors. To analyze the heavy metal stress-tolerance mechanism regulated by TaLEA1, TaLEA1-overexpressing transgenic poplar plants (Populus davidiana Dode × P. bollena Lauche) were generated. Significant differences were not observed between the proline content of the transgenic and wild-type (WT) plants before and after CdCl(2) stress. However, in comparison with the WT plants, the TaLEA1-transformed poplar plants had significantly higher superoxide dismutase (SOD) and peroxidase (POD) activities, and lower malondialdehyde (MDA) levels under CdCl(2) stress. Further, the transgenic plants showed better growth than the WT plants did, indicating that TaLEA1 provides tolerance to cadmium stress. These results suggest that TaLEA1 confers tolerance to cadmium stress by enhancing reactive oxygen species (ROS)-scavenging ability and decreasing lipid peroxidation. Subcellular-localization analysis showed that the TaLEA1 protein was distributed in the cytoplasm and nucleus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22754308</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1422-0067</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>International journal of molecular sciences</Title>
<ISOAbbreviation>Int J Mol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>A LEA gene regulates Cadmium tolerance by mediating physiological responses.</ArticleTitle>
<Pagination>
<MedlinePgn>5468-81</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/ijms13055468</ELocationID>
<Abstract>
<AbstractText>In this study, the function of a LEA gene (TaLEA1) from Tamrix androssowii in response to heavy metal stress was characterized. Time-course expression analyses showed that NaCl, ZnCl(2), CuSO(4), and CdCl(2) considerably increased the expression levels of the TaLEA1 gene, thereby suggesting that this gene plays a role in the responses to these test stressors. To analyze the heavy metal stress-tolerance mechanism regulated by TaLEA1, TaLEA1-overexpressing transgenic poplar plants (Populus davidiana Dode × P. bollena Lauche) were generated. Significant differences were not observed between the proline content of the transgenic and wild-type (WT) plants before and after CdCl(2) stress. However, in comparison with the WT plants, the TaLEA1-transformed poplar plants had significantly higher superoxide dismutase (SOD) and peroxidase (POD) activities, and lower malondialdehyde (MDA) levels under CdCl(2) stress. Further, the transgenic plants showed better growth than the WT plants did, indicating that TaLEA1 provides tolerance to cadmium stress. These results suggest that TaLEA1 confers tolerance to cadmium stress by enhancing reactive oxygen species (ROS)-scavenging ability and decreasing lipid peroxidation. Subcellular-localization analysis showed that the TaLEA1 protein was distributed in the cytoplasm and nucleus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Caiqiu</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; E-Mails: chwcaogcq@yahoo.com.cn (C.G.); wzyrgm@163.com (C.W.); zhenglei123@126.com (L.Z.); liuqiangwang2009@yahoo.com (L.W.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Chao</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Liuqiang</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yucheng</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>05</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Int J Mol Sci</MedlineTA>
<NlmUniqueID>101092791</NlmUniqueID>
<ISSNLinking>1422-0067</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4Y8F71G49Q</RegistryNumber>
<NameOfSubstance UI="D008315">Malondialdehyde</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.7</RegistryNumber>
<NameOfSubstance UI="D009195">Peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015227" MajorTopicYN="N">Lipid Peroxidation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008315" MajorTopicYN="N">Malondialdehyde</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009195" MajorTopicYN="N">Peroxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">LEA gene</Keyword>
<Keyword MajorTopicYN="N">cadmium stress</Keyword>
<Keyword MajorTopicYN="N">gene transformation</Keyword>
<Keyword MajorTopicYN="N">physiological response</Keyword>
<Keyword MajorTopicYN="N">stress tolerance</Keyword>
</KeywordList>
<GeneralNote Owner="NLM">Original DateCompleted: 20121002</GeneralNote>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>02</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>04</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>04</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22754308</ArticleId>
<ArticleId IdType="doi">10.3390/ijms13055468</ArticleId>
<ArticleId IdType="pii">ijms-13-05468</ArticleId>
<ArticleId IdType="pmc">PMC3382805</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1995 Aug;108(4):1387-1394</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jul;51(2):185-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17521408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2010 Feb 15;167(3):222-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19853962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Dec 5;283(49):34197-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18852264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jul 25;1730(1):56-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16023228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2011 Mar 15;168(5):449-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20951468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Naturwissenschaften. 2007 Oct;94(10):791-812</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17479232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2009 Feb;31(2):313-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18936880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Mar;128(3):822-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11891239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 Jun;115(1):35-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17426956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2008 Jan;46(1):82-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18054243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 Aug 14;433(1-2):98-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9738941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(2):275-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17696978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Jul;96(3):868-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Aug;35(4):452-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12904208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2005 May 15;388(Pt 1):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15631617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2006 Feb;163(2):213-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16399012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Mar;227(4):867-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18224366</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Wang, Chao" sort="Wang, Chao" uniqKey="Wang C" first="Chao" last="Wang">Chao Wang</name>
<name sortKey="Wang, Liuqiang" sort="Wang, Liuqiang" uniqKey="Wang L" first="Liuqiang" last="Wang">Liuqiang Wang</name>
<name sortKey="Wang, Yucheng" sort="Wang, Yucheng" uniqKey="Wang Y" first="Yucheng" last="Wang">Yucheng Wang</name>
<name sortKey="Zheng, Lei" sort="Zheng, Lei" uniqKey="Zheng L" first="Lei" last="Zheng">Lei Zheng</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Gao, Caiqiu" sort="Gao, Caiqiu" uniqKey="Gao C" first="Caiqiu" last="Gao">Caiqiu Gao</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C27 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002C27 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22754308
   |texte=   A LEA gene regulates Cadmium tolerance by mediating physiological responses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22754308" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020